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The CrCl2-mediated two-carbon halo-homologation of aryl, alkenyl, and aliphatic aldehydes with chloral
ethyl hemiacetal or bromal affords (Z)-a-chloro- and (Z)-a-bromo-a,b-unsaturated aldehydes, respec-
tively, in good to excellent yields and high stereoselectivity. The utility of this methodology was illus-
trated by a synthesis of 2-chloropentadec-2(Z)-enal, a toxin isolated from the marine red alga
Laurencia flexilis.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In many instances, organochromium intermediates offer che-
mo-, regio-, and/or stereoselectivities not achievable with tradi-
tional organometallic reagents.1 For example, our laboratories
have reported efficient, stereocontrolled condensations of a,a-
di-2/a,a,a- trihalo-esters,3 -amides, -ketones, -nitriles, and -methyl-
benzene with aldehydes and ketones4 induced by Cr(II)-salts.
Herein, we describe a convenient, stereoselective synthesis of
(Z)-a-chloro- and (Z)-a-bromo-a,b-unsaturated aldehydes in good
to excellent yields via the CrCl2-mediated two-carbon halo-homol-
ogation of aldehydes with chloral ethyl hemiacetal or bromal (Eq.
1). a-Halo-a,b-unsaturated aldehydes are useful synthetic inter-
mediates5 as well as structural elements in natural products.6

However, they are generally accessible only via multi-step
sequences or using highly reactive reagents and are often obtained
as E/Z-mixtures in reduced yields.7
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The scope and limitations of this facile transformation were
explored using a panel of representative aldehydes as summarized
in Table 1. The simplest aryl aldehyde, benzaldehyde (1), was read-
ily converted into the corresponding (Z)-a-chlorocinnamaldehyde8

(2) using chloral ethyl hemiacetal9 and CrCl2 under the standard
reaction conditions, that is, THF at room temperature (entry 1).10

Catalytic CrCl2 regenerated in situ by Mn(0)11 or Fe(0)12 resulted
in lower yields of 2 as did the use of solvents other than THF.13

By conducting the reaction at 0 �C, the somewhat labile bromal gave
rise to (Z)-a-bromocinnamaldehyde7c (3) from 1 in synthetically
useful yield (entry 2). The halo-homologations were relatively
insensitive to the nature of the aryl moiety. Electron-rich substrates,
viz., 1-naphthaldehyde (4), p-tolualdehyde (6), and piperonal (8),
and electron-poor 4-trifluoromethylbenzaldehyde (10) furnished
adducts 514 (entry 3), 77b (entry 4), 9 (entry 5), and 11 (entry 6),
respectively, in comparable yields. Importantly, the reaction was
compatible with a wide variety of functional groups. Benzyl/methyl
bis-ether 12, p-bromobenzaldehyde (14), and the reduction prone
p-nitrobenzaldehyde (16) reacted smoothly and accordingly led
to a-chloroenals 13 (entry 7), 157b (entry 8), and 17 (entry 9),
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Table 1
Synthesis of a-halo-a, b-unsaturated aldehydes

Entry Aldehyde Adduct Yield(%)

1 91

2 1 69

3 81

4 91

5 82

6 89

7 85

8 77

9 71

10 87

11 71a

12 87

13 82

a 5–7% of the E-isomer was also obtained.
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respectively, without complications. It was also gratifying to find
conjugated (18?19, entry 10), aliphatic (20?21, entry 11), and
a-branched aliphatic aldehydes (22?23, entry 12) behaved analo-
gously. The utility of this methodology was further demonstrated
using commercial tridecanal (24) for the one-step synthesis of
2-chloropentadec-2(Z)-enal (25, entry 13), a toxin isolated from
the marine red alga Laurencia flexilis.6

In concert with earlier mechanistic proposals,3 CrCl2 likely acts
as a multiple one-electron reductant generating chromium(III)-
enolate 26 from chloral/bromal which is intercepted by aldehyde
(Eq. 2). The resultant Reformatsky-type adduct 27 undergoes fur-
ther reductive metallation with concomitant E2-elimination to
give the final a-halo-a,b-enal adduct.
2. General procedure: a-chloro-a,b-unsaturated aldehydes

A mixture of aldehyde (1 mmol) and 2,2,2-trichloro-1-ethoxy-
ethanol (chloral ethyl hemiacetal, 1 mmol) in anhydrous THF
(1 mL) was added to a stirring, room temperature suspension of
anhydrous CrCl2

15 (4 mmol, Aldrich Chem. Co.) in anhydrous THF
(10 mL) under an argon atmosphere. After 10 h, the reaction mix-
ture was quenched with aqueous 5% HCl (10 mL), stirred for an
additional 10 min and then extracted with ether (3 � 25 mL). The
combined ethereal extracts were washed with brine, dried over
anhydrous Na2SO4, and the solvent was evaporated under reduced
pressure. The residue was purified by column chromatography to
give a-chloro-a,b-unsaturated aldehyde in the indicated yields
(Table 1).

2.1. a-Bromo-a,b-unsaturated aldehydes

Same as above except a mixture of aldehyde (1 mmol) and bro-
mal (2 mmol, Fluka Chem. Co.) was added to a 0 �C suspension of
CrCl2 and kept at this temperature for 1 h before quenching and
purification as described above.
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